Research Article | | Peer-Reviewed

A New Epistemological Insight of the Coniacian-Santonian Oceanic Anoxic Event (OAE3)

Received: 11 July 2023     Accepted: 31 July 2023     Published: 21 February 2024
Views:       Downloads:
Abstract

Eighteen planktic and eleven benthic foraminiferal species were recorded from the dark grey to black shale facies of the Matulla Formation in Abu Zeneima area, West-Central Sinai, Egypt. The faunal assemblage is dominated by cosmopolitan whiteinellids, marginotruncanids, Dicarinellids, Contusotruncanids and Heterohelicids. The planktic species with high taxonomic diversity were used to zone the Coniacian and Santonian stages, as well as define the Coniacian/ Santonian boundary, while benthic foraminifera is of minor contribution in age assignment. The stratigraphic analysis of the relations and ranges of these fauna led to the recognition of five biozones; Dicarinella primitiva or Huberella huberi or Marginotruncana sinuosa for the Coniacian, while Dicarinella concavata and Dicarinella asymetrica for the Santonian. Also, the Coniacian/Santonian boundary was delineated, considering the appearance of Dicarinella concavata and disappearance of Huberella huberi, as well as the increase of Marginotruncanids (M. renzi, M. sigali, M. marginata, M. pseudolinneiana….etc.). Furthermore, the black shales found in the middle part of the Matulla Formation were attributed to the Coniacian-Santonian Oceanic Anoxic Event (OAE3). The occurrence of black shales with planktic foraminifera during the Coniacian–Santonian interval in several countries belonging to five continents, was the main impetus to render this event a global event.

Published in American Journal of BioScience (Volume 12, Issue 1)
DOI 10.11648/j.ajbio.20241201.14
Page(s) 22-34
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Foraminifera, Coniacian, Santonian, OAE3, Egypt

References
[1] Said R. The geology of Egypt. Egyptian General Petroleum Corporation, 1990; 734 pp.
[2] Jenkyns HC. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 1980; 137 (2): 171-188.
[3] Ismail AA. Lower Senonian foraminifera and ostracoda from Abu Zeneima area, West Central Sinai, Egypt. Middle East Research Centre, Ain Shams University, Earth Sciences Series, 1993; 7: 115-130.
[4] Ayyad SN, Abed MM, Abu Zied RH. Biostratigraphy of the Upper Cretaceous rocks in Gebel Arif El-Naga, northeastern Sinai, Egypt, based on benthonic foraminifera. Cretaceous Research 1997; 18: 141-159.
[5] El Sheikh HA, Abdelhamid MAM, El Qot GME. Macrofossils and foraminiferal biostratigraphy and paleoecology of some Cenomanian–Santonian sequences in north and west central Sinai Egypt. Egyptian Journal of Geology. 1998; 42/2: 471-495.
[6] Obaidalla NA, Kassab AS. Integrated Biostratigraphy of the Coniacian-Santonian Sequence, Southwestern Sinai, Egypt. Egyptian Journal of Paleontology. 2002; 2: 85-104.
[7] Kennedy W. J. Ammonite faunas of the Coniacian, Santonian and Campanian stages in the Aquitaine Basin. Géologie Méditerranéenne, Année 1983; 10 (3-4): 103-113.
[8] Blair SA, Watkins DK. High-resolution calcareous nannofossil biostratigraphy for the Coniacian/Santonian Stage boundary, Western Interior Basin. Cretaceous Research. 2009; 30 (2): 367-384. gs
[9] Peryt D, Dubicka Z, Wierny W. Planktonic Foraminiferal Biostratigraphy of the Upper Cretaceous of the Central European Basin. Geosciences, 2022; 12: 22p. https://doi.org/10.3390/geosciences12010022
[10] Jenkyns HC. Pelagic Environments. In: READING, H. G. (ed.). Sedimentary Environments and Facies. Blackwell Scientific Publications, Oxford, 1978; 314-71.
[11] Arthur MA, Brumsack H-J, Jenkyns HC, Schlanger SO. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences, in Ginsburg, R. N., Beaudoin B. (eds.), Cretaceous Resources, Events, and Rhythms. Norwell, Massachusetts, Kluwer Academic. 1990; 75-119.
[12] Hofmann P, Wagner T, Beckmann B. Millennial- to centennial scale record of African climate variability and organic carbon accumulation in the Coniacian–Santonian eastern tropical Atlantic (Ocean Drilling Program Site 959, off Ivory Coast and Ghana). Geology. 2003; 31 (2): 135-138.
[13] Núñez-Useche F, Barragán R, Moreno-Bedma, JA, Canet C. Mexican archives for the major Cretaceous Oceanic Anoxic Events. Boletín de la Sociedad Geológica Mexicana. 2014; 66 (3(: 491-505. Stable URL: https://www.jstor.org/stable/10.2307/24921297
[14] Bolli H. M. Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera. Asoc. Venezolana Geol. Min. Petrol. Bol. Inform. 1966, 9, 2–32.
[15] Postuma J. Manual of Planktonic Foraminifera. Elsevier Publishing Co., Amsterdam. 1971; 420.
[16] Caron M. Cretaceous Planktic Foraminifera. In: Bolli, H. M., Saunders, J. B. and Perch Nielsen K, Eds., Plankton Stratigraphy, Cambridge University Press, Cambridge. 1985; 17-86.
[17] Robaszynski F, Caron M. Foraminifers planktonique du cretace. Bulletine Society Geological of France. 1995; 166: 681-698.
[18] Robaszynski F., Gonzalez Donoso, J. M., Linares D., Amedro F., Caron M., Dupuis C., Dhondt A. V. and Gartner S. Le Cretace superieur de la region de Kalaat Senan, Tunisie Centrale. Litho-biostratigraphie integree: zones d’ammonites, de foraminiferes planctoniques et de nannofossiles du Turonien superieur au Maastrichtien. Bull. Centres Rech Explor.-Prod. ElfAquitaine. 2000; 22, 359–490.
[19] Coccioni R, Silva IP. Revised Upper Albian–Maastrichtian planktonic foraminiferal biostratigraphy and magnetostratigraphy of the classical Tethyan Gubbio section (Italy). Newsletter on Stratigraphy. 2015; 48: 47–90.
[20] Petrizzo M. R., Jiménez Berrocoso Á., Falzoni, F., Huber B. T., & MacLeod K. G. The Coniacian–Santonian sedimentary record in southern Tanzania (Ruvuma Basin, East Africa): Planktonic foraminiferal evolutionary, geochemical and palaeoceanographic patterns. Sedimentology. 2017; 64 (1), 252–285. https://doi.org/10.1111/sed.12331
[21] Premoli Silva I, Sliter WV. Cretaceous Planktonic Foraminiferal Biostratigraphy & Evolutionary Trends from the Bottaccione Section, Gubbio, Italy. Palaeontographia Italica. 1995; 82: 1-89.
[22] Coquand H., Position des Ostrea columba et biauriculata dans le groupe de la craie inférieure. Bulletin de la Société géologique de France. 1857; 2 (4): 745-766.
[23] Dalbiez F. The Genus Globotruncana in Tunisia. Micropaleontology. 1955; 1 (2): 161-171.
[24] Robaszynski F, Caron M. Atlas de foraminife`rs planctoniques du Cre´tace´ moyen (Mer Boreale et Tethys), premie repartie. Cahiers de Micropaleontologie. 1979; 1: 1-185.
[25] Wonders A. A. H. Middle and Late Cretaceous planktonic foraminifera of the western Mediterranean area. Utrecht Micropaleontol. Bull. 1980; 24, 1–158.
[26] Birkelund T, Hancock JM, Hart MB, Rawson PF, Remane J, Robaszynski F, Schmid F, Surlyk F. Cretaceous Stage Boundaries-Proposals. Bulletin of the Geological Society of Denmark. 1984; 33: 3-20.
[27] Marks P. Proposal for the Recognition of Boundaries between Cretaceous Stages by Means of Planktonic Foraminiferal Biostratigraphy. Bulletin of the Geological Society of Denmark. 1984; 33: 163-169.
[28] Kauffman EG, kennedy WJ, Wood CJ. The Coniacian Stage and Substage Boundaries. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre. 1996; 66: 81-94.
[29] Georgescu M. D. A new planktonic heterohelicid genus from the Upper Cretaceous (Turonian). Micropaleontology. 2007; 53: 212-220.
[30] Georgescu M. D. Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian). Revista Española de Micropaleontología. 2011; 43: 173-207. gs
[31] Georgescu M. D. Upper Cretaceous planktic foraminiferal biostratigraphy. Studia UBB Geologia 2017; 61: 5–20.
[32] Petrizzo M. R. Late Cretaceous planktonic foraminiferal bioevents in the Tethys and in the Southern Ocean record: an overview. J. Foramin. Research. 2003; 33: 330–337.
[33] Donze P., Porthalult B., Thomel G. & de Villoutryeys O. Le Senonien inferieur de Puget-Theniers (Alpes-Maritimes) et sa microfaune. Geobios. 1970; 3 (2): 41-106. gs
[34] Huber B. T., Petrizzo M. R., Watkins D. K., Haynes S. J. & MacLeod K. G. Correlation of Turonian continental margin and deep-sea sequences in the subtropical Indian Ocean sediments by integrated planktonic foraminiferal and calcareous nannofossil biostratigraphy. Newsletters on Stratigraphy. 2017; 50: 141-185. gs
[35] Vahidinia M, Haddadi M, Ardestani MS. Investigation of Main Planktonic Foraminiferal Bio-Events in Surgah Formation at Pol-e-Dokhtar Area, South Western of Iran. Open Journal of Geology. 2016; 6: 774-785. http://dx.doi.org/10.4236/ojg.2016.68060
[36] Lamolda MA, Paul CRC, Peryt D, Pons JM. The Global Boundary Stratotype and Section Point (GSSP) for the base of the Santonian Stage, “Cantera de Margas”, Olazagutia, northern Spain. Episodes. 2014; 37: 2–13.
[37] Brotzen F. Foraminiferen aus dem Senon Palastinas. Zeitschrift des Deutschen Palastina-Vereins. 1934; 28-72. gs
[38] Sigal J. Aperçu stratigraphique sur la micropaléontologie du Crétacé. Monographies Régionales, Algérie. 1952; 1 (26): 3-43.
[39] Lamolda MA, Peryt D, Ion J. Planktonic foraminiferal bioevents in the Coniacian/Santonian boundary interval at Olazagutia (Navarra province), Spain. Cretaceous Research. 2007; 28: 18-29.
[40] Walaszczyk I, Cech S, Crampton JC, Dubicka Z, Ifrim C, Jarvis I, Kennedy W J, Lees JA, Lodowski D, Pearce M. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Coniacian Stage (Salzgitter-Salder, Germany) and its auxiliary sections (Słupia Nadbrzezna, central Poland; Strˇelecˇ, Czech Republic; and El Rosario, NE Mexico). Episodes, Ahead of Print. 2021.
[41] El Dawy MH, Hewaidy AA. Biostratigraphy, paleobathymetry and biogeography of some Late Maastrichtian - Early Eocene Rotaliina from Egypt. Egyptian Journal of Paleontology. 2003; 3: 55-86.
[42] Brotzen F. Foraminiferen aus dem schwedischen untersten Senon von Eriksdal in Schonen. Arsbok Sveriges Geologiska Undersökning ser. C. 1936; 30 (3): 1-206.
[43] Pervushova EM, Ryabov IP, Guzhikov AYu, Vishnevskaya VS, Kopaevich LF, Guzhikova AA, Kalyakin EA, Fomin VA, VB, Seltser Ilinskii EI, Mirantsev G, Proshina PA. Turonian–Coniacian Deposits of the Kamennyi Brod-1 Section (Southern Ulyanovsk-Saratov Trough). Stratigraphy and Geological Correlation. 2019; 27 (7): 804–839.
[44] Petrizzo MR. Upper Turonian–lower Campanian planktonic foraminifera from southern mid–high latitudes (Exmouth Plateau, NW Australia): Biostratigraphy and taxonomic notes. Cretaceous Research. 2000; 21: 479–505.
[45] Dubicka Z, Peryt D, Szuszkiewicz M. Foraminiferal evidence for paleogeographic and paleoenvironmental changes across the Coniacian–Santonian boundary in western Ukraine. Palaeogeogrphy Palaeoclimatology Palaeoecology. 2014; 401: 43–56.
[46] Ion J. E´tude micropale´ontologique (Foraminife`res planctoniques) du Cre´tace´ supe´rieur de Tara Baˆrsei (Carpates Orientales). Me´moires de l’Institut de Geologie de la Roumanie. 1983; 31: 5-167.
[47] Ion J, Antonescu E, Melinte MC, Szasz L. Integrated biostratigraphy of the Coniacian of Romania. Acta Palaeontologica Romaniae. 2000; 2: 213-223.
[48] Obaidalla NA, Mahfouz KH, Soliman MF, Moghawry A. Stratigraphical studies on the Matulla/Sudr formational boundary, western Sinai, Egypt. Assiut University Journal of Geology. 2018; 47 (2): 23-40.
[49] Schlanger SO, Jenkyns HC. Cretaceous oceanic anoxic events – causes and consequences. Geologie en Mijnbouw. 1976; 5 (3-4): 179-184.
[50] Wagreich M. Coniacian-Santonian oceanic red beds and their link to Oceanic Anoxic Event 3. In: Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins, and Paleoceanographic and Paleoclimatic Significance (Eds X. Hu, C. Wang, R. W. Scott, M. Wagreich and L. Jansa), SEPM Spec. Publ. 2009; 91: 235–242.
[51] Ryan W. B. F. and Cita, M. B. Ignorance concerning episodes of ocean-wide stagnation. Mar. Geol. 1977; 23: 197-215.
[52] Arthur MA, Schlanger SO. Cretaceous "oceanic anoxic events" as causal factors in development of reef-reservoired giant oil fields. American Association of Petroleum Geologists Bulletin. 1979; 63 (6): 870-885.
[53] Wagreich M. “OAE 3” – regional Atlantic organic carbon burial during the Coniacian-Santonian. Clim. Past. 2012; 8: 1447–1455.
[54] Sachse V. F., Littke, R., Jabour, H., Schühmann, T., Kluth, O. Late Cretaceous (Late Turonian, Coniacian and Santonian) petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Marine and Petroleum Geology. 2012; 29: 35-49.
[55] Wagner T, Sinninghe Damsté JS, Hofmann P, Beckmann B. Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales. Paleoceanography. 2004; 19: P. 3009.
[56] Davis C., Pratt L., Sliter W., Mompart L., Murat B. Factors influencing organic carbon and trace metal accumulation in the upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela, in Barrera, E., Johnson, C. (eds.), The Evolution of Cretaceous Ocean/Climate Systems: Boulder, Colorado, Geological Society of America Special Paper. 1999; 332: 203-230.
[57] Erlich R. N., Palmer-Koleman S. E., Lorente M. A. Geochemical characterization of oceanographic and climatic changes recorded in upper Albian to lower Maastrichtian strata, western Venezuela: Cretaceous Research. 1999; 20 (5): 547-581.
[58] Vergara L. S. Cretaceous black shales in the Upper Magdalena Valley, Colombia. New organic geochemical results (Part II): Journal of South American Earth Sciences. 1997; 10 (2): 133-145.
[59] Rangel A., Parra P., Niño C. The La Luna formation: Chemostratigraphy and organic facies in the Middle Magdalena Basin: Organic Geochemistry. 2000; 31 (12): 1267-1284.
[60] Brookfield M. E., Hemmings D. P., Van Straaten P. Paleoenvironments and origin of the sedimentary phosphorites of the Napo Formation (Late Cretaceous, Oriente Basin, Ecuador): Journal of South American Earth Sciences. 2009; 28 (2): 180-192.
[61] Erlich RN, Villamil T, Keens-Dumas J. Controls on the deposition of Upper Cretaceous organic carbon–rich rocks from Costa Rica to Suriname, in Bartolini, C., Buffler, R. T., Blickwede, J. (eds.), The Circum-Gulf of México and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: American Association of Petroleum Geologists Memoir. 2003; 79: 1-45.
[62] Bottjer RJ, Stein JA. Relationship of stratigraphic traps to submarine unconformities: Examples from the Tocito Sandstone, San Juan Basin, New México and Colorado, in Dolson C., Hendricks M. L., Wescott W. A. (eds.), Unconformity-Related Hydrocarbons in Sedimentary Sequence: Rocky Mountain Association of Geologists, Denver, Colorado. 1994; 181-208.
[63] Dean WE, Arthur MA. Geochemical expressions of cyclicity in Cretaceous pelagic limestone sequences: Niobrara Formation, Western Interior Seaway, in Dean, W. E., Arthur, M. A. (eds.), Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA: Society for Sedimentary Geology (SEPM), Concepts in Sedimentology and Paleontology. 1998; 6: 227-255.
[64] Reda El Gammal MH, Orabi H. Coniacian–late Campanian Planktonic Events in the Duwi Formation, Red Sea Region, Egypt. Journal of Geology and Geophysics. 2019; 7: 456. https://doi.org/10.4172/2381-8719.1000456
[65] Tissot B. Effect on prolific petroleum source rocks and major coal deposits caused by sea level changes. Nature. 1979; 277: 462-465.
[66] Bomou B, Adatte T, Tantawy A, Mort HP, Fleltmann D, Huang Y, Föllml KB. The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet. Palaeogeography Palaeoclimatology Palaeoecology. 2013; 369: 466-481, https://doi.org/10.1016/j.palaeo.2012.11.011
[67] Isawi B, El-Hinnawi M, Francis M, Mehanna A. Contribution to the structure and phosphate deposits of Qusseir area, Egypt. Organization of Mineralogical Resources and Geological Survey. 1969; 50: 1-35.
[68] Glenn CR. Depositional sequences of the Duwi, Sibaiya and phosphate formations, Egypt: phosphogenesis and glauconitization in a Late Cretaeous epeiric sea. Geological Society of Egypt, Special Publication. 2016; 52: 205-222.
[69] Soliman MF, Essa MA. Upper Dakhla Formation (Beida Shale member) at G. Duwi, Red Sea, Egypt: Mineralogical and geochemical aspects. Third Intern Conf Geol Africa. 2003; 2: 283-305.
[70] Klitzsch E, Groschke M, Hermann-Degen W. Wadi Qena: Paleozoic and pre-Campanian R. Said (Ed.), The Geology of Egypt, Balkema/Rotterdam/Brookfield. 1990; 321-327.
Cite This Article
  • APA Style

    Ismail, A. A. (2024). A New Epistemological Insight of the Coniacian-Santonian Oceanic Anoxic Event (OAE3). American Journal of BioScience, 12(1), 22-34. https://doi.org/10.11648/j.ajbio.20241201.14

    Copy | Download

    ACS Style

    Ismail, A. A. A New Epistemological Insight of the Coniacian-Santonian Oceanic Anoxic Event (OAE3). Am. J. BioScience 2024, 12(1), 22-34. doi: 10.11648/j.ajbio.20241201.14

    Copy | Download

    AMA Style

    Ismail AA. A New Epistemological Insight of the Coniacian-Santonian Oceanic Anoxic Event (OAE3). Am J BioScience. 2024;12(1):22-34. doi: 10.11648/j.ajbio.20241201.14

    Copy | Download

  • @article{10.11648/j.ajbio.20241201.14,
      author = {Ahmed Aly Ismail},
      title = {A New Epistemological Insight of the Coniacian-Santonian Oceanic Anoxic Event (OAE3)},
      journal = {American Journal of BioScience},
      volume = {12},
      number = {1},
      pages = {22-34},
      doi = {10.11648/j.ajbio.20241201.14},
      url = {https://doi.org/10.11648/j.ajbio.20241201.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbio.20241201.14},
      abstract = {Eighteen planktic and eleven benthic foraminiferal species were recorded from the dark grey to black shale facies of the Matulla Formation in Abu Zeneima area, West-Central Sinai, Egypt. The faunal assemblage is dominated by cosmopolitan whiteinellids, marginotruncanids, Dicarinellids, Contusotruncanids and Heterohelicids. The planktic species with high taxonomic diversity were used to zone the Coniacian and Santonian stages, as well as define the Coniacian/ Santonian boundary, while benthic foraminifera is of minor contribution in age assignment. The stratigraphic analysis of the relations and ranges of these fauna led to the recognition of five biozones; Dicarinella primitiva or Huberella huberi or Marginotruncana sinuosa for the Coniacian, while Dicarinella concavata and Dicarinella asymetrica for the Santonian. Also, the Coniacian/Santonian boundary was delineated, considering the appearance of Dicarinella concavata and disappearance of Huberella huberi, as well as the increase of Marginotruncanids (M. renzi, M. sigali, M. marginata, M. pseudolinneiana….etc.). Furthermore, the black shales found in the middle part of the Matulla Formation were attributed to the Coniacian-Santonian Oceanic Anoxic Event (OAE3). The occurrence of black shales with planktic foraminifera during the Coniacian–Santonian interval in several countries belonging to five continents, was the main impetus to render this event a global event.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A New Epistemological Insight of the Coniacian-Santonian Oceanic Anoxic Event (OAE3)
    AU  - Ahmed Aly Ismail
    Y1  - 2024/02/21
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ajbio.20241201.14
    DO  - 10.11648/j.ajbio.20241201.14
    T2  - American Journal of BioScience
    JF  - American Journal of BioScience
    JO  - American Journal of BioScience
    SP  - 22
    EP  - 34
    PB  - Science Publishing Group
    SN  - 2330-0167
    UR  - https://doi.org/10.11648/j.ajbio.20241201.14
    AB  - Eighteen planktic and eleven benthic foraminiferal species were recorded from the dark grey to black shale facies of the Matulla Formation in Abu Zeneima area, West-Central Sinai, Egypt. The faunal assemblage is dominated by cosmopolitan whiteinellids, marginotruncanids, Dicarinellids, Contusotruncanids and Heterohelicids. The planktic species with high taxonomic diversity were used to zone the Coniacian and Santonian stages, as well as define the Coniacian/ Santonian boundary, while benthic foraminifera is of minor contribution in age assignment. The stratigraphic analysis of the relations and ranges of these fauna led to the recognition of five biozones; Dicarinella primitiva or Huberella huberi or Marginotruncana sinuosa for the Coniacian, while Dicarinella concavata and Dicarinella asymetrica for the Santonian. Also, the Coniacian/Santonian boundary was delineated, considering the appearance of Dicarinella concavata and disappearance of Huberella huberi, as well as the increase of Marginotruncanids (M. renzi, M. sigali, M. marginata, M. pseudolinneiana….etc.). Furthermore, the black shales found in the middle part of the Matulla Formation were attributed to the Coniacian-Santonian Oceanic Anoxic Event (OAE3). The occurrence of black shales with planktic foraminifera during the Coniacian–Santonian interval in several countries belonging to five continents, was the main impetus to render this event a global event.
    
    VL  - 12
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Geology Department, Faculty of Science, Ain Shams University, Cairo, Egypt

  • Sections